
MATH 2443
Final Exam Review Sheet Solutions

1. Assume that the function f(u, v) has continuous partial derivatives fu and fv
and suppose that fu(1, 1) = 1 and that fv(1, 1) = 2. A new function g(x, y, z)
is defined by setting g(x, y, z) = f(x/y, y/z). Compute gy(1, 1, 1).

Set u = x/y and v = y/z. By the chain rule,
gy(x, y, z) = fu(u, v)∂u/∂y + fv(u, v)∂v/∂y = fu(u, v)(−x/y2) + fv(u, v)(1/z).
When x = y = z = 1, we have that u = v = 1 so
gy(1, 1, 1) = fu(1, 1)(−1) + fv(1, 1) = 1(−1) + 2 = 1.

2. Evaluate the limit or show it does not exist.

(a) lim
(x,y)→(0,0)

6x3y

2x4 + y4
.

Along the path x = 0, this is lim
y→0

0

y4
= 0. Along the path y = x, this is

lim
x→0

6x4

3x4
= 2. As 0 6= 2, the limit does not exist.

(b) lim
(x,y)→(0,0)

x2 sin2(y)

x2 + 2y2
.

Switching to polar we get that this equals

lim
r→0

r2 cos2(θ) sin2(r sin(θ))

r2 cos2(θ) + 2r2 sin2(θ)
= lim

r→0

cos2(θ) sin2(r sin(θ))

cos2(θ) + 2 sin2(θ)
.

The bottom of this fraction is never 0 and the top approaches 0 as r → 0
so the limit is 0.

(c) lim
(x,y)→(0,0)

sin(x2 + y2)

x2 + y2
.

Switching to polar, we get lim
r→0

sin(r2)

r2
. By L’Hopitals rule, this is

lim
r→0

2r cos(r2)

2r
= lim

r→0
cos(r2) = 1.

(d) lim
(x,y)→(1,2)

y − 2x

4− xy2
.

Along the path x = 1, this is lim
y→2

y − 2

4− y2
= lim

y→2
− 1

2 + y
= −1

4
. Along the

path y = 2, this is lim
x→1

2− 2x

4− 4x
=

1

2
. So the limit does not exist.

3. Find all critical points of the function f and determine if each critical point is
a local max, local min, or saddle point.
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(a) f(x, y) = x3y + 12x2 − 8y

The partial derivatives are fx(x, y) = 3x2y + 24x and fy(x, y) = x3 − 8.
The critical points are where both partial derivatives are 0 so x3 − 8 = 0
which implies that x = 2 and 3x2y + 24x = 0 so 12y + 48 = 0 and
y = −4. So f has one critical point at (2,−4).

To determine what type of point it is, use the second derivative test. The
second order partial derivatives are
fxx(x, y) = 6xy + 24, fyy(x, y) = 0, fxy(x, y) = 3x2 which are -24, 0, and
12 respectively when x = 2, y = −4. Then D = fxxfyy − (fxy)

2 = −144 so
it is a saddle point.

(b) f(x, y) = e4y−x
2−y2

The partial derivatives are
fx(x, y) = −2xe4y−x

2−y2 , fy(x, y) = (4− 2y)e4y−x
2−y2 . As e4y−x

2−y2 is
never 0, these are both 0 when x = 0 and y = 2 so f has one critical
point at (0, 2).

The second order partial derivatives are
fxx(x, y) = e4y−x

2−y2(4x2 − 2), fyy(x, y) = e4y−x
2−y2((4− 2y)2 − 2), and

fxy(x, y) = e4y−x
2−y2(−2x)(4− 2y). These are −2e4,−2e4, and 0

respectively at x = 0, y = 2 so D = 4e8. As D > 0 and fxx < 0 this is a
local maximum.

4. Find the point or points on the curve x2 + 3y2 = 36 which are closest to the
point (2, 0). Find the point or points on the curve which are furthest from the
point (2, 0).

We are trying to find max/mins of
√

(x− 2)2 + y2 under the constraint

x2 + 3y2 = 36. The maximum and minimum values of
√

(x− 2)2 + y2 occur at
the same place as the maximum and minimums of (x− 2)2 + y2 so instead we
will look for max/mins of f(x, y) = (x− 2)2 + y2 under the constraint
g(x, y) = x2 + 3y2 = 36. The region x2 + 3y2 = 36 is an ellipse which is closed
and bounded so we are guaranteed to have an absolute maximum and
minimum. We can find the max and min by finding all critical points and
comparing the values of f at these points.

We use Lagrange multipliers to find the critical points. We need to find
solutions to the three equations fx = λgx, fy = λgy, g(x, y) = 36 which are
2(x− 2) = λ2x, 2y = λ6y, and x2 + 3y2 = 36. By the second equation, we
have that y = 0 or λ = 1/3. If y = 0 then by the third equation x2 = 36 so
x = ±6 and we get the critical points (±6, 0). If λ = 1/3 then the first
equation becomes 2(x− 2) = (1/3)(2x) which means that x = 3. Then by the
last equation 32 + 3y2 = 36 so y = ±3 and we get critical points (3,±3).
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Plugging each critical point into f gives
f(6, 0) = 16, f(−6, 0) = 64, f(3, 3) = 10, f(3,−3) = 10 so the closest points are
(3, 3) and (3,−3) and the furthest point is (−6, 0).

5. Evaluate

∫ 2

0

∫ √2x−x2
0

y2

(x2 + y2)3/2
dydx.

The curve y =
√

2x− x2 can be rewritten as x2 − 2x+ y2 = 0 and completing
the square makes it (x− 1)2 + y2 = 1 so it is the circle of radius 1 with center
(1, 0). The region we are integrating over is the upper half of this circle. This
integral will be much easier in polar. The circle x2 + y2 = 2x becomes
r2 = 2r cos(θ) or r = 2 cos(θ). The θ values which trace out the upper half of
the circle are from 0 to π/2 so the integral becomes∫ π/2

0

∫ 2 cos(θ)

0

r2 sin2(θ)

r3
r drdθ =

∫ π/2

0

∫ 2 cos(θ)

0

sin2(θ) drdθ

=

∫ π/2

0

2 cos(θ) sin2(θ) dθ =
2

3
sin3(θ)

∣∣∣π/2
0

=
2

3
.

6. Let f(x, y, z) be differentiable. Suppose f(1, 3, 5) = 7 and
∇f(1, 3, 5) = 〈2,−3, 1〉.

(a) Compute the directional derivative of f at the point (1, 3, 5) in the
direction of the point (−1, 4, 7).

The direction vector is 〈−2, 1, 2〉 and the unit direction vector is
〈−2

3
, 1
3
, 2
3
〉. The directional derivative is the dot product of the unit

direction vector with the gradient so it is 〈−2
3
, 1
3
, 2
3
〉 · 〈2,−3, 1〉 = −5

3
.

(b) Find the equation of the tangent plane to the surface f(x, y, z) = 7 at the
point (1, 3, 5).

The is the plane through the point (1, 3, 5) with normal
∇f(1, 3, 5) = 〈2,−3, 1〉 so the equation is
2(x− 1)− 3(y − 3) + (z − 5) = 0 or 2x− 3y + z = −2.

(c) Use linear approximation to estimate f(.9, 3.2, 5.1).

f(.9, 3.2, 5.1) ≈ f(1, 3, 5) + fx(1, 3, 5)(.9− 1) + fy(1, 3, 5)(3.2− 3) +
fz(1, 3, 5)(5.1− 5) = 7 + 2(−.1) + (−3)(.2) + 1(.1) = 6.3.

(d) Compute ∇g(3, 2) where g(x, y) = f(2y − x, xy − 3, x+ y).

Since we are using x, y for the variables plugged into g, we will use u, v, w
for the variables in f . Then g = f(u, v, w) where
u = 2y − x, v = xy − 3, w = x+ y. We need to find gx(3, 2) and gy(3, 2).
By the chain rule,

gx(x, y) = fu(u, v, w)
∂u

∂x
+ fv(u, v, w)

∂v

∂x
+ fw(u, v, w)

∂w

∂x
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= fu(u, v, w)(−1) + fv(u, v, w)(y) + fw(u, v, w)(1)

and

gy(x, y) = fu(u, v, w)
∂u

∂y
+ fv(u, v, w)

∂v

∂y
+ fw(u, v, w)

∂w

∂y

= fu(u, v, w)(2) + fv(u, v, w)(x) + fw(u, v, w)(1) .

When x = 3, y = 2 we have that u = 1, v = 3, w = 5 so
gx(3, 2) = 2(−1) + (−3)(2) + (1)(1) = −7 and
gy(3, 2) = (2)(2) + (−3)(3) + (1)(1) = −4. So ∇g(3, 2) = 〈−7,−4〉.

7. Find the area of the part of the surface z = x2 + y2 between the planes z = 1
and z = 2.

The surface can be parametrized as r(x, y) = 〈x, y, x2 + y2〉 where
1 ≤ x2 + y2 ≤ 2. The partial derivatives are rx = 〈1, 0, 2x〉 and ry = 〈0, 1, 2y〉
and their cross product is rx × ry = 〈−2x,−2y, 1〉. The surface area will be
the integral of |rx × ry| over the possible x, y values and

|rx × ry| =
√

4x2 + 4y2 + 1 so the surface area is∫∫
1≤x2+y2≤2

√
4x2 + 4y2 + 1 dA .

Switching to polar this becomes
∫ 2π

0

∫ √2
1

r
√

4r2 + 1 drdθ. Using
u = 4r2 + 1, du = 8rdr we get that the inside integral is∫ √2
1

r
√

4r2 + 1 dr =
∫ 9

5
1
8

√
u du = 1

12
u3/2

∣∣∣9
5

= 1
12

(27− 5
√

5) so the double

integral is
∫ 2π

0
1
12

(27− 5
√

5) dθ = (27−5
√
5)π

6
.

8. Evaluate

∫ 1

0

∫ 4

1

x
√

3 + x2/y dydx+

∫ 2

1

∫ 4

x2
x
√

3 + x2/y dydx.

This would be difficult to integrate in this order, but could be integrated in
the order dxdy using u-substitution. These two regions can be combined into

one dxdy region as
∫ 4

1

∫ √y
0

x
√

3 + x2/y dxdy. Using the u-substitution
u = 3 + x2/y, du = (2x/y)dx the inside integral is∫ √y
0

x
√

3 + x2/y dx =
∫ 4

3
(y/2)

√
u du = (y/3)u3/2

∣∣∣4
3

= (8
3
−
√

3)y. So the

double integral is∫ 4

1
(8
3
−
√

3)y dy = (1
2
)(8

3
−
√

3)y2
∣∣∣4
1

= (1
2
)(8

3
−
√

3)(16− 1) = 40−15
√
3

2
.

9. The function f(x, y, z) = x2 + 2xy + 2y2 + 3z2 has a minimum value on the
plane x+ 3y + 3z = 8. Find the point where the minimum occurs.

Using Lagrange multipliers with g(x, y, z) = x+ 3y + 3z we need to find
solutions to the four equations fx = λgx, fy = λgy, fz = λgz, x+ 3y + 3z = 8.
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The equations are 2x+ 2y = λ, 2x+ 4y = 3λ, 6z = 3λ, x+ 3y + 3z = 8.
Subtracting the first equation from the second we get that 2y = 2λ so y = λ.
Plugging this into the first equation we get that x = −1

2
λ. The third equations

gives us that z = 1
2
λ. We plug all of these into the fourth equation to get

4λ = 8 so λ = 2 then use this to get that x = −1, y = 2, z = 1. The only
critical point is (−1, 2, 1) so the minimum must occur at this point.

10. Let w = x
√
y − x− y. Find the maximum and minimum values of w and

where the occur on the triangular region bounded by the x-axis, the y-axis,
and the line x+ y = 12.

This is closed and bounded region so we will find all critical points and find w
at each. First check for interior critical points where both partial derivatives
are 0. The partial derivatives are ∂w/∂x =

√
y − 1 and ∂w/∂y = x

2
√
y
− 1

which are both 0 at the point (2, 1). This point is in the region so it is our
only interior critical point.

Next check for critical points on each of the three boundary lines. On x = 0,
w = −y and w′ = −1 so there are no critical points. Similarly on y = 0,
w = −x so there are no critical points. For the line x+ y = 12 we will use
Lagrange multipliers. The equations we get are√
y − 1 = λ, x

2
√
y
− 1 = λ, x+ y = 12. Combining the first two equations we get

that x = 2y and plugging this into x+ y = 12 we get that y = 4 and x = 8.
This point is in our region so we have a critical point at (8, 4).

Finally, we must also include corner points where two boundary curves meet.
This gives us three more critical points: (0, 0), (0, 12), and (12, 0). We check
the value of w at all 5 critical points.

Point w

(2, 1) -1
(8, 4) 4
(0, 0) 0
(12, 0) -12
(0, 12) -12

The maximum is 4 at (8, 4) and the minimum is −12 at (0, 12) and (12, 0).

11. Given a function f(x, y), suppose its gradient at the point (1, 2) is 〈2,−4〉.

(a) Find the directional derivative of f in the direction of the origin.

The direction is 〈−1,−2〉 and the unit vector in that direction is
1√
5
〈−1,−2〉. Dot with the gradient to get the directional derivative is

1√
5
〈−1,−2〉 · 〈2,−4〉 = 6√

5
.
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(b) Find the directional derivative of f in the direction of the maximum rate
of increase of f .

The direction of the maximum rate of increase is the direction of the
gradient and the directional derivative in that direction is
|∇f(1, 2)| =

√
20.

(c) Let w = f(t3, t2 + 1). Find dw/dt at t = 1.

Write x = t3, y = t2 + 1. By the chain rule,
dw/dt = fx(x, y)(dx/dt) + fy(x, y)(dy/dt) = fx(x, y)(3t2) + fy(x, y)(2t).
When t = 1, x = 1, y = 2 so this is
fx(1, 2)(3) + fy(1, 2)(2) = (2)(3) + (−4)(2) = −2.

12. Find
∫
C
y2(ex + 1)dx+ 2y(ex + 1)dy where C is the closed path formed of

three parts: the curve y = x2 from (0, 0) to (2, 4), the line segment from (2, 4)
to (0, 2) and the line segment from (0, 2) to (0, 0).

C is closed and oriented counterclockwise so we can use Green’s Theorem to
evaluate this with P = y2(ex + 1), Q = 2y(ex + 1). We integrate
Qx − Py = (2yex)− (2y(ex + 1)) = −2y. So the integral becomes∫ 2

0

∫ x+2

x2
−2y dydx =

∫ 2

0
−y2

∣∣∣x+2

x2
=
∫ 2

0
−(x+ 2)2 + x4 dx =

−1
3
(x+ 2)3 + 1

5
x5
∣∣∣2
0

= −184
15

.

13. A particle is moved in the plane from the origin to the point (1, 1). While it is
moving, it is acted on by the force F = 〈y2 − yex + xy, 2xy − ex + x2〉. This
experiment is done twice. The first time the particle is moved in a straight
line and the second time is it moved along the curve y = x3. The work done
by the force the first time is W1 and the second time it is W2. Determine
which of W1 and W2 is bigger and by how much.

Write C1 for the line segment from (0, 0) to (1, 1) which is along the line y = x
and C2 for the curve y = x3 from (0, 0) to (1, 1). Then C = C2 ∪ −C1 is a
closed curve oriented counterclockwise. If W is the work done over C then
W = W2 −W1. We don’t need to know W1 and W2, just their difference so
this is exactly what we want to calculate. We can calculate W using Green’s
theorem with P = y2 − yex + xy and Q = 2xy − ex + x2. Then as
Qx = 2y − ex + 2x, Py = 2y − ex + x the difference Qx − Py is x. Then

W =
∫
C
F · dr =

∫ 1

0

∫ x
x3
x dydx =

∫ 1

0
x2 − x4 dx = 2

15
. So W2 is larger than W1

by 2/15.

14. The force F = 〈ex2 , 2x− ey2〉 acts on a particle moving from (0, 0) to (1, 1).

(a) Compute the work done by the force if the particle moves in a straight
line.
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We can parametrize the line segment C1 as x = t, y = t, 0 ≤ t ≤ 1. Then
dx = dt, dy = dt so the work is∫
C1
ex

2
dx+ (2x− ey2)dy =

∫ 1

0
et

2
+ 2t− et2 dt =

∫ 1

0
2t dt = 1.

(b) Compute the work done if the particle moves first along the x-axis to
(4, 0) then then in a straight line to (1, 1).

Call this path C2 and let C = C2 ∪ −C1 where C1 is the path from part
a. C is a closed curve oriented counterclockwise so we can use Green’s
Theorem to find the work on C. Write D for the triangular region
enclosed by C. We take P = ex

2
so Py = 0 and Q = 2x− ey2 so Qx = 2

and by Green’s Theorem
∫
C
F · dr =

∫∫
D

2 dA = 2A(D) where A(D) = 2
is the area of the triangle D so

∫
C
F · dr = 4. We then have that∫

C
F · dr =

∫
C2
F · dr −

∫
C1
F · dr so∫

C2
F · dr =

∫
C
F · dr +

∫
C1
F · dr = 4 + 1 = 5.

15. Let w = f(x, y, z) be a differentiable function. At the point x = 3, y = 2, z = 1
assume that w = 4, ∂w/∂x = −1, ∂w/∂y = 2, and ∂w/∂z = 3. Now view z as
a function of x and y implicitly defined by f(x, y, z) = 4. Find ∇z at
x = 3, y = 2.

As we have assumed w is fixed to be 4, we have that changing x does not
change w so by the chain rule 0 = fz(x, y, z)(∂z/∂x) + fx(x, y, z). When
x = 3, y = 2 we have that z = 1 so this becomes 0 = 3(∂z/∂x) + (−1) so
∂z/∂x = 1

3
. Similarly, 0 = fy(3, 2, 1) + fz(3, 2, 1)(∂z/∂y) so ∂z/∂y = −2

3
and

∇z(3, 2) = 〈1
3
,−2

3
〉.

16. Find the maximum and minimum of f(x, y, z) = xy + 1
3
z3 on

x2 + y2 + 2z2 ≤ 32.

This is a closed and bounded region so we need to find all critical points and
evaluate f at each one. First look for interior critical points where all three
partial derivatives are 0. The partial derivatives are fx = y, fy = x, fz = z2 so
there is a critical point at (0, 0, 0). This is in our region so we have exactly one
interior critical point.

Next look for critical points on the boundary curve x2 + y2 + 2z2 = 32 using
Lagrange multipliers. The Lagrange multiplier equations are
y = 2λx, x = 2λy, z2 = 4λz, x2 + y2 + 2z2 = 32. If we plug the first equation
into the second we get that x = (2λ)2x so x = 0 or λ = ±1

2
. We consider each

of these three cases.

Case 1: x = 0. If x = 0 then by the first equation we have that y = 0 and by
the fourth equation 2z2 = 32 so z = ±4 and we get the critical points (0, 0, 4)
and (0, 0,−4).

Case 2: λ = 1
2
. The first equation becomes y = x and the third equation is

z2 = 2z. This means that z = 0 or z = 2 and this case splits into two more
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cases. If z = 0 then plugging in z = 0, y = x into the fourth equation we get
that 2x2 = 32 so x = ±4 and there are critical points at (4, 4, 0) and
(−4,−4, 0). If z = 2 then plugging in y = x and z = 2 into the fourth equation
we get that 2x2 + 8 = 32 so x = ±

√
12 and we get the critical points

(
√

12,
√

12, 2) and (−
√

12,−
√

12, 2).

Case 3: λ = −1
2
. The first equation becomes y = −x and the third becomes

z2 = −2z so z = 0 or z = −2. As in the previous cases we plug y = −x and
z = 0 or z = 2 into the fourth equation and get the critical points
(4,−4, 0), (−4, 4, 0), (

√
12,−

√
12,−2), (−

√
12,
√

12,−2).

There are a total of 11 critical points and we evaluate f at each one.
Point f(x, y, z) = xy + 1

3
z3

(0, 0, 0) 0
(0, 0, 4) 64/3
(0, 0,−4) -64/3
(4, 4, 0) 16
(−4,−4, 0) 16
(4,−4, 0) -16
(−4, 4, 0) -16

(
√

12,
√

12, 2) 44/3

(−
√

12,−
√

12, 2) 44/3

(
√

12,−
√

12,−2) -44/3

(−
√

12,
√

12,−2) -44/3

The maximum is 64/3 and the minimum is −64/3.

17. Set up but do not evaluate an integral equal to the area of that part of the
surface z =

√
1− x− y that lies inside the cylinder of radius 1 whose axis is

the x-axis.

The cylinder has formula y2 + z2 = 1 so the part of the surface which is inside
the cylinder will be where y2 + z2 ≤ 1. This is a condition on y and z so it will
be easiest if we solve the surface for x. This will also get rid of the square
root, but we need to remember that we only have positive z values. The
surface becomes x = 1− y − z2 with z ≥ 0, y2 + z2 ≤ 1. This can be
parametrized as r(y, z) = 〈1− y − z2, y, z〉. The partial derivatives are
ry = 〈−1, 1, 0〉 and rz = 〈−2z, 0, 1〉 and the cross product is
ry × rz = 〈1, 1, 2z〉. The surface area is the integral of |ry × rz| =

√
4z2 + 2

over the possible y, z values. The y, z values are z ≥ 0 and y2 + z2 ≤ 1 so the

surface area is
∫ 1

−1

∫√1−y2
0

√
4z2 + 2 dzdy.

18. Evaluate
∫
C

(y + sin(x))dx+ (z2 + cos(y))dy + x3dz where C is the curve
parametrized by r(t) = 〈sin(t), cos(t), sin(2t)〉, 0 ≤ t ≤ 2π. Hint: C is on the
surface z = 2xy.
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Computing this directly would be difficult so we will use Stokes’ Theorem. By
the trig identity sin(2t) = 2 sin(t) cos(t) we see that C is on the surface
z = 2xy. It is also on the surface x2 + y2 = 1 so we can think of C as the
intersection of the surface z = 2xy and x2 + y2 = 1. For Stokes’ Theorem we
need a surface with boundary curve C so we will take S to be the part of the
surface z = 2xy which is inside the cylinder x2 + y2 = 1. Note that C is
oriented clockwise when viewed from above so we will take S to have
downward orientation. By Stokes’ Theorem, this integral is equal to∫∫

S
curl(F ) · dS.

S can be parametrized as r(x, y) = 〈x, y, 2xy〉 for x2 + y2 ≤ 1. Then
rx = 〈1, 0, 2y〉, ry = 〈0, 1, 2x〉 and rx × ry = 〈−2y,−2x, 1〉. This does not
match our orientation so instead we will use 〈2y, 2x,−1〉 and we get that
dS = 〈2y, 2x,−1〉 dA.

We also need to compute curl(F ) = ∇× F =
〈∂/∂x, ∂/∂y, ∂/∂z〉 × 〈y + sin(x), z2 + cos(y), x3〉 = 〈−2z,−3x2,−1〉. The
variables in our parametrization are x and y so we need to rewrite curl(F ) in
terms of x and y using the parametrization so we replace z with 2xy to get
that curl(F )(r(x, y)) = 〈−4xy,−3x2,−1〉.
If D is the disk x2 + y2 ≤ 1 then

∫∫
S

curl(F ) · dS =∫∫
D
〈−4xy,−3x2,−1〉 · 〈2y, 2x,−1〉 dA =

∫∫
D
−8xy2 − 6x3 + 1 dA. This can be

integrated by switching to polar, or we can note that
∫∫

D
−8xy2 dA = 0 and∫∫

D
−6x3 dA = 0 by symmetry and

∫∫
D

1 dA = π as it is the area of a circle of
radius 1. This gives us that∫
C

(y + sin(x))dx+ (z2 + cos(y))dy + x3dz =
∫∫

S
curl(F ) · dS = π.

19. (a) Find a number c such that the force field
F = 〈yex + 3x2 + 3y2, ex + cxy + 3y2〉 is conservative.

If P = yex + 3x2 + 3y2, Q = ex + cxy + 3y2 then F will be conservative if
and only if Py = Qx. The derivatives are Py = ex + 6y and Qx = ex + cy
so c = 6.

(b) Suppose the constant c has the value found in part a. Find a function
f(x, y) such that F = ∇f .

We are trying to find f with fx = yex + 3x2 + 3y2 and
fy = ex + 6xy + 3y2. Integrating fx with respect to x we get that
f(x, y) = yex + x3 + 3xy2 + g(y). The y partial derivative of this is
fy(x, y) = ex + 6xy + g′(y). We set this equal to our formula for
fy = ex + 6xy + 3y2 to get that g′(y) = 3y2 so g(y) = y3. Plug this into
the formula for f(x, y) to get that f(x, y) = yex + x3 + 3xy2 + y3.

(c) Continuing to assume that c has the value found in part a, find the work
done by F on a particle moving from (1, 0) to (0, 1) along the circle of
radius 1 centered at the origin.

9



Using the fundamental theorem of line integrals, this will be
f(0, 1)− f(1, 0) = 2− 1 = 1.

20. A solid sphere with radius
√

2 is cut into two unequal piece by a plane, where
the distance from the center of the ball to the plane is 1 unit. Set up, but do
not evaluate, integrals equal to the volume of the smaller piece. Do this in
rectangular, spherical, and cylindrical coordinates.

We first need to put the sphere and plane into 3-dimensional space. The
easiest way to do this is to put the center of the sphere at the origin so the
sphere is x2 + y2 + z2 = 2 and take the plane to be z = 1. The intersection of
these surfaces is the circle x2 + y2 = 1 on the plane z = 1. This means that for
rectangular and cylindrical coordinates, the projection to the xy-plane will be
the disk x2 + y2 ≤ 1. Note also that if we draw the cross section on the
yz-plane it the circle y2 + z2 = 2 and the line z = 1 which intersect at the
point (1, 1), (−1, 1). At the point (1, 1) the angle with the positive z-axis at
the intersection is π/4 so when we set up the spherical coordinates the φ
values will go from 0 to π/4. The three integrals are:

Rectangular:

∫ 1

−1

∫ √1−x2
−
√
1−x2

∫ √2−x2−y2

1

dzdydx

Cylindrical:

∫ 2π

0

∫ 1

0

∫ √1−r2
1

r dzdrdθ

Spherical:

∫ 2π

0

∫ π/4

0

∫ √2
1/ cos(φ)

ρ2 sin(φ) dρdφdθ

21. Let S be the surface consisting of three surfaces S1, S2, S3 where S1 is the part
of the cylinder x2 + y2 = 16 with 0 ≤ z ≤ 4, S2 is the disk x2 + y2 ≤ 16 on the
plane z = 4, and S3 is the hemisphere z =

√
16− x2 − y2. Find

∫∫
S
F · dS

where F = 〈ecos(z), 2y + 3x, 1/(x2 + y2)〉.

If computed directly, this would be 3 surface integrals and the ecos(z)

component of F would be messy and difficult to integrate. This is a closed
surface so we can use the divergence theorem to replace these three surface
integrals with one triple integral. No orientation is given for S so we can
assume the positive (outward) orientation and by the divergence theorem∫∫

S
F · dS =

∫∫∫
E

divF dV where E is the region enclosed by S.

The divergence of F is
divF = ∇·F = 〈∂/∂x, ∂/∂y, ∂/∂z〉·〈ecos(z), 2y+3x, 1/(x2+y2)〉 = 0+2+0 = 2.
The region E is easiest to set up in cylindrical coordinates so we get that∫∫∫

E

divF dV =

∫ 2π

0

∫ 4

0

∫ 4

√
16−r2

2r dzdrdθ
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=

∫ 2π

0

∫ 4

0

8r − 2r
√

16− r2 drdθ .

The integral of 8r is 4r2 and we can use u-substitution with u = 16− r2 to
integrate −2r

√
16− r2 and get that this equals∫ 2π

0

4r2 +
2

3
(16− r2)3/2

∣∣∣4
0
dθ =

∫ 2π

0

64

3
dθ =

128π

3
.

22. Let S be the surface of the region which is between the spheres
x2 + y2 + z2 = 1 and x2 + y2 + z2 = 4 and also above the cone z =

√
x2 + y2.

Find
∫∫

S
F · dS where F = 〈2x2z, xyz, y4〉.

As in the previous problem we will use the divergence theorem to replace 3
surface integrals with 1 triple integral. The divergence of F is
divF = 4xz + xz + 0 = 5xz. The region is easiest to set up in spherical
coordinates. In spherical coordinates x = ρ sin(φ) cos(θ), z = ρ cos(φ),
dV = ρ2 sin(φ) dρdφdθ and the spheres have formulas ρ = 1 and ρ = 2 and the
cone has formula φ = π/4. So we get the integral∫∫∫

E

divF dV =

∫ 2π

0

∫ π/4

0

∫ 2

1

5ρ4 sin2(φ) cos(φ) cos(θ) dρdφdθ .

As the bounds are all constants we can rewrite this as(∫ 2

1

5ρ4 dρ
)(∫ π/4

0

sin2(φ) cos(φ) dφ
)(∫ 2π

0

cos(θ) dθ
)
.

The last integral is 0 so the whole thing is 0.

23. Evaluate
∫
C
x2ydx+ 1

3
x3dy + xydz where C is the curve of intersection of the

hyperbolic paraboloid z = y2 − x2 and the cylinder x2 + y2 = 1 oriented
counterclockwise when viewed from above.

We will use Stokes’ Theorem with the surface S equal to the part of
z = y2 − x2 which is inside the cylinder x2 + y2 = 1 oriented upwards. The
surface S can be parametrized as r(x, y) = 〈x, y, y2 − x2〉 for x2 + y2 ≤ 1. The
partial derivatives are rx = 〈1, 0,−2x〉 and ry = 〈0, 1, 2y〉 so the cross product
rx × ry = 〈2x,−2y, 1〉. This matches our orientation.

Take F = 〈x2y, 1
3
x3, xy〉 so curlF = 〈x,−y, 0〉. This is already just in terms of

x, y which are the variables in our parametrization of S so we don’t need to do
anything else with curlF . So we get that this integral equals∫∫

x2+y2≤1
〈x,−y, 0〉 · 〈2x,−2y, 1〉 dA =

∫∫
x2+y2≤1

2x2 + 2y2 dA .
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Changing to polar this becomes∫ 2π

0

∫ 1

0

2r3 drdθ =

∫ 2π

0

1

2
r4
∣∣∣1
0
dθ =

∫ 2π

0

1

2
dθ = π .

24. Let S be the top and 4 sides (but not bottom) of the cube with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1) oriented
outwards. Let F = 〈xy, z2y, x3z〉. Compute

∫∫
S
F · dS and

∫∫
S

curl(F ) · dS.

We will first find
∫∫

S
F · dS. This could be done directly but would involve 5

surface integrals so we want to instead use the divergence theorem. The
surface is not closed so we will need to close it with the bottom face and
compute both the integral over the whole cube and the integral over the
bottom face. Let S1 be the surface of the cube oriented outwards and S2 be
the bottom face oriented down. Then S1 = S ∪ S2 so∫∫

S1
F · dS =

∫∫
S
F · dS +

∫∫
S2
F · dS so∫∫

S
F · dS =

∫∫
S1
F · dS−

∫∫
S2
F · dS. The divergence of F is

divF = y + z2 + x3 so by the divergence theorem∫∫
S1
F · dS =

∫ 1

0

∫ 1

0

∫ 1

0
y + z2 + x3 dzdydx = 13

12
. We will compute

∫∫
S2
F · dS

directly. The surface S2 can be parametrized as r(x, y) = 〈x, y, 0〉 for
0 ≤ x ≤ 1, 0 ≤ y ≤ 1. The derivatives are rx = 〈1, 0, 0〉, ry = 〈0, 1, 0〉 so the
cross product is rx × ry = 〈0, 0, 1〉. This does not match our orientation so we
use 〈0, 0,−1〉 instead. We also need plug our parametrization into F so we
replace z with 0 to get that F = 〈xy, z2y, x3z〉 = 〈xy, 0, 0〉. Then∫∫

S2
F · dS =

∫ 1

0

∫ 1

0
〈xy, 0, 0〉 · 〈0, 0,−1〉 dydx =

∫ 1

0

∫ 1

0
0 dydx = 0. It follows

that
∫∫

S
F · dS =

∫∫
S1
F · dS−

∫∫
S2
F · dS = 13

12
− 0 = 13

12
.

Next compute
∫∫

S
curl(F ) · dS. Again if done directly we would need to do 5

surface integrals. As we are integrating the curl of F , we can use Stokes’
Theorem to replace this with the line integral over the boundary curve C. C is
the square with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0) oriented
counterclockwise when viewed from above. By Stokes’ Theorem,∫∫

S
curl(F ) · dS =

∫
C
F · dr =

∫
C

(xy)dx+ (z2y)dy + (x3z)dz. As C is on the
xy-plane we will have that z = 0 so this becomes

∫
C
xy dx. If we look at the 4

line segments which make up the square, we have that dx = 0 on the two
vertical lines and y = 0 on the bottom line so the integral will be 0 over these
three lines. This just leaves the top C1 from (1, 1) to (0, 1). We can
parametrize C1 as x = 1− t, y = 1, 0 ≤ t ≤ 1 so dx = −dt and∫
C1

(xy) dx =
∫ 1

0
−(1− t) dt = −1

2
. So we get that

∫∫
S

curl(F ) · dS = −1
2
.

Another way to compute
∫∫

S
curl(F ) · dS is to replace it with∫∫

S1
curl(F ) · dS where S1 is another surface with the same boundary curve.

In particular we can take S1 to be the bottom face oriented up. S1 can be
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parametrized as r(x, y) = 〈x, y, 0〉 for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and
rx × ry = 〈0, 0, 1〉. Then curlF = 〈−2yz,−3x2z,−x〉 and plugging in our
parametrization this becomes 〈0, 0,−x〉. So∫∫

S
curl(F ) · dS =

∫ 1

0

∫ 1

0
〈0, 0,−x〉 · 〈0, 0, 1〉 dA =

∫ 1

0

∫ 1

0
−x dxdy = −1

2
.
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